Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jul 15;167(2):1004-13.
doi: 10.4049/jimmunol.167.2.1004.

IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis

Affiliations

IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis

E Lubberts et al. J Immunol. .

Abstract

T cell IL-17 displays proinflammatory properties and is expressed in the synovium of patients with rheumatoid arthritis. Its contribution to the arthritic process has not been identified. Here, we show that blocking of endogenous IL-17 in the autoimmune collagen-induced arthritis model results in suppression of arthritis. Also, joint damage was significantly reduced. In contrast, overexpression of IL-17 enhanced collagen arthritis. Moreover, adenoviral IL-17 injected in the knee joint of type II collagen-immunized mice accelerated the onset and aggravated the synovial inflammation at the site. Radiographic and histologic analysis showed markedly increased joint destruction. Elevated levels of IL-1beta protein were found in synovial tissue. Intriguingly, blocking of IL-1alphabeta with neutralizing Abs had no effect on the IL-17-induced inflammation and joint damage in the knee joint, implying an IL-1 independent pathway. This direct potency of IL-17 was underscored in the unabated IL-17-induced exaggeration of bacterial cell wall-induced arthritis in IL-1beta(-/-) mice. In conclusion, this data shows that IL-17 contributes to joint destruction and identifies an IL-1-independent role of IL-17. These findings suggest IL-17 to be a novel target for the treatment of destructive arthritis and may have implications for tissue destruction in other autoimmune diseases.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources