Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jul;21(4):465-77.
doi: 10.1046/j.1365-2281.2001.00350.x.

An integrated model of the human ventilatory control system: the response to hypoxia

Affiliations

An integrated model of the human ventilatory control system: the response to hypoxia

M Ursino et al. Clin Physiol. 2001 Jul.

Abstract

The mathematical model of the respiratory control system described in a previous companion paper is used to analyse the ventilatory response to hypoxic stimuli. Simulation of long-lasting isocapnic hypoxia at normal alveolar PCO2 (40 mmHg=5.33 kPa) shows the occurrence of a biphasic response, characterized by an initial peak and a subsequent hypoxic ventilatory decline (HVD). The latter is about as great as 2/3 of the initial peak and can be mainly ascribed to prolonged neural hypoxia. If isocapnic hypoxia is performed during hypercapnia (PACO2=48 mmHg =6.4 kPa), the ventilatory response is stronger and HVD is minimal (about 1/10-1/5 of the initial peak). During poikilocapnic hypoxia, ventilation exhibits smaller changes compared with the isocapnic case, with a rapid return toward baseline within a few minutes. Moreover, a significant undershoot occurs at the termination of the hypoxic period. This undershoot may lead to apnea and to a transient destabilization of the control system if the peripheral chemoreflex gain and time delay are twofold greater than basal.

PubMed Disclaimer

LinkOut - more resources