Linkage and association studies of prostate cancer susceptibility: evidence for linkage at 8p22-23
- PMID: 11443539
- PMCID: PMC1235306
- DOI: 10.1086/321967
Linkage and association studies of prostate cancer susceptibility: evidence for linkage at 8p22-23
Abstract
Multiple lines of evidence have implicated the short arm of chromosome 8 as harboring genes important in prostate carcinogenesis. Although most of this evidence comes from the identification of frequent somatic alterations of 8p loci in prostate cancer cells (e.g., loss of heterozygosity), studies have also suggested a role for 8p genes in mediation of inherited susceptibility to prostate cancer. To further examine this latter possibility, we performed linkage analyses, in 159 pedigrees affected by hereditary prostate cancer (HPC), using 24 markers on the short arm of chromosome 8. In the complete set of families, evidence for prostate cancer linkage was found at 8p22-23, with a peak HLOD of 1.84 (P=.004), and an estimate of the proportion of families linked (alpha) of 0.14, at D8S1130. In the 79 families with average age at diagnosis >65 years, an allele-sharing LOD score of 2.64 (P=.0005) was observed, and six markers spanning a distance of 10 cM had LOD scores >2.0. Interestingly, the small number of Ashkenazi Jewish pedigrees (n=11) analyzed in this study contributed disproportionately to this linkage. Mutation screening in HPC probands and association analyses in case subjects (a group that includes HPC probands and unrelated case subjects) and unaffected control subjects were carried out for the putative prostate cancer-susceptibility gene, PG1, previously localized to the 8p22-23 region. No statistical differences in the allele, genotype, or haplotype frequencies of the SNPs or other sequence variants in the PG1 gene were observed between case and control subjects. However, case subjects demonstrated a trend toward higher homozygous rates of less-frequent alleles in all three PG1 SNPs, and overtransmission of a PG1 variant to case subjects was observed. In summary, these results provide evidence for the existence of a prostate cancer-susceptibility gene at 8p22-23. Evaluation of the PG1 gene and other candidate genes in this area appears warranted.
Figures

References
Electronic-Database Information
-
- GDA: Software for the Analysis of Discrete Genetic Data, http://lewis.eeb.uconn.edu/lewishome/gda.html
-
- Haplotype Information Help Page, http://www.bioinf.mdc-berlin.de/hap/ithap-help.html
-
- Linkage Designer, http://dnalab-www.uia.ac.be/dnalab/ld.html
-
- Weeks FTP page, ftp://watson.hgen.pitt.edu (for FASTSLINK)
References
-
- Bova GS, MacGrogan D, Levy A, Pin SS, Bookstein R, Isaacs WB (1996) Physical mapping of chromosome 8p22 markers and their homozygous deletion in a metastatic prostate cancer. Genomics 35:46–54 - PubMed
-
- Bookstein R (2001) Tumor suppressor genes in prostate cancer. In: Chung LWK, Isaacs WB, Simons JW (eds) Prostate cancer, biology, genetics, and the new therapeutics. Humana Press, Totowa, NJ
-
- Chuaqui RF, Sanz-Ortega J, Vocke C, Linehan WM, Sanz-Esponera J, Zhuang Z, Emmert-Buck MR, Merino MJ (1995) Loss of heterozygosity on the short arm of chromosome 8 in male breast carcinomas. Cancer Res 55:4995–4998 - PubMed
-
- Cliby W, Ritland S, Hartmann L, Dodson M, Halling KC, Keeney G, Podratz KC, Jenkins RB (1993) Human epithelial ovarian cancer allelotype. Cancer Res 53:2393–2398 - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases