Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001:238:47-60; discussion 60-3.
doi: 10.1002/0470846534.ch4.

Early events of rotavirus infection: the search for the receptor(s)

Affiliations
Review

Early events of rotavirus infection: the search for the receptor(s)

C F Arias et al. Novartis Found Symp. 2001.

Abstract

The entry of rotaviruses into epithelial cells seems to be a multistep process. Infection competition experiments have suggested that at least three different interactions between the virus and cell surface molecules take place during the early events of infection, and glycolipids as well as glycoproteins have been suggested to be primary attachment receptors for rotaviruses. The infectivity of some rotavirus strains depends on the presence of sialic acid on the cell surface, however, it has been shown that this interaction is not essential, and it has been suggested that there exists a neuraminidase-resistant cell surface molecule with which most rotaviruses interact. The comparative characterization of the sialic acid-dependent rotavirus strain RRV (G3P5[3]), its neuraminidase-resistant variant nar3, and the human rotavirus strain Wa (G1P1A[8]) has allowed us to show that alpha 2 beta 1 integrin is used by nar3 as its primary cell attachment site, and by RRV in a second interaction, subsequent to its initial contact with a sialic acid-containing cell receptor. We have also shown that integrin alpha V beta 3 is used by all three rotavirus strains as a co-receptor, subsequent to their initial attachment to the cell. We propose that the functional rotavirus receptor is a complex of several cell molecules most likely immersed in glycosphingolipid-enriched plasma membrane microdomains.

PubMed Disclaimer

Publication types