Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jul;50(7):594-601.
doi: 10.1099/0022-1317-50-7-594.

Invasion of murine respiratory epithelial cells in vivo by Burkholderia cepacia

Affiliations

Invasion of murine respiratory epithelial cells in vivo by Burkholderia cepacia

C-H Chiu et al. J Med Microbiol. 2001 Jul.

Abstract

Pulmonary infections caused by Burkholderia cepacia are an important cause of morbidity and mortality in cystic fibrosis (CF) patients. Several features suggestive of invasion and intracellular sequestration of B. cepacia in CF are persistence of infection in the face of antibiotic therapy and a propensity to cause bacteraemic infections in patients with CF. A mouse respiratory challenge model was used to investigate the invasion phenotype of B. cepacia in vivo. After intratracheal inoculation, epidemic B. cepacia strains translocated from lung to liver and spleen; however, all bacteria were cleared from all organs within 7 days. B. cepacia strains, irrespective of cable piliation, were capable of attaching to and then invading murine respiratory tract epithelial cells. Histopathological examination of lungs showed interstitial infiltrates comprised mainly of polymorphonuclear leucocytes and were associated with widened alveolar septa. Electron microscopy demonstrated B. cepacia within epithelial cells and pulmonary macrophages. This study provides support for in-vitro observations that B. cepacia strains from patients with CF adhere to and then invade respiratory epithelial cells. The invasion phenotype in B. cepacia may be an important virulence factor in CF infections.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources