Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jul 13;285(2):348-54.
doi: 10.1006/bbrc.2001.5200.

The effect of modifications of the charged residues in the transmembrane helices on the transport activity of the melibiose carrier of Escherichia coli

Affiliations

The effect of modifications of the charged residues in the transmembrane helices on the transport activity of the melibiose carrier of Escherichia coli

P Z Ding et al. Biochem Biophys Res Commun. .

Abstract

The melibiose transport carrier of Escherichia coli (coded by melB gene) is a cotransport system which couples the transport of a-galactosides to protons, sodium, or lithium ions. The charged amino acid residues in membrane-spanning helices are of considerable interest because many of them have important function in substrate recognition. In most cases changing these charged residue to an uncharged residue (cysteine) results in total loss of activity. In this communication we describe experiments in which the cysteine substitution for a charged residue was chemically changed by sulfhydryl reagents (MTSEA and MTSET to restore a positive charge and MTSES a negative charge) or by iodoacetic acid or through oxidation by hydrogen peroxide so as to regain the original negative charge. In two cases (D55C and D124C) the reconstructed negative charges via the oxidation of the thiol to the sulfinic and/or sulfonic acid resulted in partial recovery of transport: D55C up to 27% of the normal and D124C up to 4% of the normal in melibiose accumulation; D55C up to 36% of the normal and D124 up to 4.5% of the normal in downhill transport. Sulfhydryl reagents and iodoacetic acid failed to recover transport in all cases. We infer that the configurations of the charges as well as the structure of the side chains that carry them are critical in the maintenance of the transport.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources