Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Oct 5;276(40):37266-72.
doi: 10.1074/jbc.M103949200. Epub 2001 Jul 9.

Unravelling the interaction of thapsigargin with the conformational states of Ca(2+)-ATPase from skeletal sarcoplasmic reticulum

Affiliations
Free article

Unravelling the interaction of thapsigargin with the conformational states of Ca(2+)-ATPase from skeletal sarcoplasmic reticulum

M I Fortea et al. J Biol Chem. .
Free article

Abstract

Preincubation of thapsigargin with sarcoplasmic reticulum vesicles in the presence of high Ca(2+) or the addition of high Ca(2+) to microsomal vesicles preincubated with thapsigargin in the absence of Ca(2+) allowed full enzyme phosphorylation by ATP. However, the enzyme activity was not protected by high Ca(2+) even when the samples were subjected to gel filtration before ATP addition. Our data indicate that: (i) the enzyme in the Ca(2+)-bound conformation can be stabilized in the presence of thapsigargin; (ii) the conformational transition from the Ca(2+)-free to the Ca(2+)-bound state can be elicited by Ca(2+) when thapsigargin is present; (iii) thapsigargin binding occurs whether or not the enzyme is in the presence of Ca(2+), and so a ternary complex enzyme-Ca(2+)-thapsigargin may be formed; (iv) thapsigargin can be dissociated from the enzyme with a slow kinetics after dilution under drastic conditions; (v) the kinetics of Ca(2+) binding is clearly slowed down by thapsigargin; and (vi) thapsigargin does not affect the hydrolysis rate of phosphorylating substrates when measured in the absence of Ca(2+), indicating that thapsigargin specifically inhibits the Ca(2+)-dependent activity.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources