Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jul;161(2):231-237.
doi: 10.1016/s0168-9452(01)00328-4.

Modulation of nitrate reductase activity in cucumber (Cucumis sativus) roots

Affiliations

Modulation of nitrate reductase activity in cucumber (Cucumis sativus) roots

P de la Haba et al. Plant Sci. 2001 Jul.

Abstract

Nitrate reductase (NR) (EC 1.6.6.1) activity and NR activation state, i.e. activity in the presence of Mg(2+) relative to activity in the absence of Mg(2+), in cucumber (Cucumis sativus) leaves increased in the light and decreased in the dark. In contrast to leaves, NR activation state in the roots did not show light/dark-dependent changes. Root NR was activated by anoxia or by addition of uncoupler (CCCP) or mannose. These treatments decreased ATP levels in root tissue. On the contrary, high oxygen supply promoted some NR inactivation. When an extract from anoxic roots was preincubated with ATP, NR was gradually inactivated. Subsequent addition of 5'-AMP resulted in a remarkable reactivation of the enzyme. NR extracted from hyperoxygenated roots was activated by preincubation with 5'-AMP, and the process was reversed by ATP. These results suggest the participation of adenine nucleotides on the in vivo modulation of NR activity in cucumber roots. NR was activated in vivo by cellular acidification and inactivated by alkalinisation. The acid-induced activation of NR was greatly prevented by okadaic acid, a protein phosphatase inhibitor. Our data indicate that, as in barley roots, anoxia, uncouplers, and mannose feeding activate cucumber root NR, at least partly, by enhancing NR dephosphorylation via a decrease in the internal level of ATP and a concomitant cellular acidification.

PubMed Disclaimer

LinkOut - more resources