Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Jul 1;10(14):1465-73.
doi: 10.1093/hmg/10.14.1465.

Sim1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus

Affiliations
Comparative Study

Sim1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus

J L Michaud et al. Hum Mol Genet. .

Abstract

The bHLH-PAS transcription factor SIM1 is required for the development of the paraventricular nucleus (PVN) of the hypothalamus. Mice homozygous for a null allele of Sim1 (Sim1(-/-)) lack a PVN and die perinatally. In contrast, we show here that Sim1 heterozygous mice are viable but develop early-onset obesity, with increased linear growth, hyperinsulinemia and hyperleptinemia. Sim1(+/-) mice are hyperphagic but their energy expenditure is not decreased, distinguishing them from other mouse models of early-onset obesity such as deficiencies in leptin and melanocortin receptor 4. Quantitative histological comparison with normal littermates showed that the PVN of Sim1(+/-) mice contains on average 24% fewer cells without a selective loss of any identifiable major cell type. Since acquired lesions in the PVN also induce increased appetite without a decrease in energy expenditure, we propose that abnormalities of PVN development cause the obesity of Sim1(+/-) mice. Severe obesity was described recently in a patient with a balanced translocation disrupting SIM1. Pathways controlling the development of the PVN thus have the potential to cause obesity in both mice and humans.

PubMed Disclaimer

Publication types

MeSH terms