Interplay between termination and translation machinery in eukaryotic selenoprotein synthesis
- PMID: 11453681
- DOI: 10.1006/jmbi.2001.4809
Interplay between termination and translation machinery in eukaryotic selenoprotein synthesis
Abstract
Termination of translation in eukaryotes is catalyzed by eRF1, the stop codon recognition factor, and eRF3, an eRF1 and ribosome-dependent GTPase. In selenoprotein mRNAs, UGA codons, which typically specify termination, serve an alternate function as sense codons. Selenocysteine incorporation involves a unique tRNA with an anticodon complementary to UGA, a unique elongation factor specific for this tRNA, and cis-acting secondary structures in selenoprotein mRNAs, termed SECIS elements. To gain insight into the interplay between the selenocysteine insertion and termination machinery, we investigated the effects of overexpressing eRF1 and eRF3, and of altering UGA codon context, on the efficiency of selenoprotein synthesis in a transient transfection system. Overexpression of eRF1 does not increase termination at naturally occurring selenocysteine codons. Surprisingly, selenocysteine incorporation is enhanced. Overexpression of eRF3 did not affect incorporation efficiency. Coexpression of both factors reproduced the effects with eRF1 alone. Finally, we show that the nucleotide context immediately upstream and downstream of the UGA codon significantly affects termination to incorporation ratios and the response to eRF overexpression. Implications for the mechanisms of selenocysteine incorporation and termination are discussed.
Copyright 2001 Academic Press.
Similar articles
-
High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes.J Mol Biol. 1999 Oct 8;292(5):1003-16. doi: 10.1006/jmbi.1999.3085. J Mol Biol. 1999. PMID: 10512699
-
Functional analysis of the interplay between translation termination, selenocysteine codon context, and selenocysteine insertion sequence-binding protein 2.J Biol Chem. 2007 Dec 21;282(51):36797-807. doi: 10.1074/jbc.M707061200. Epub 2007 Oct 22. J Biol Chem. 2007. PMID: 17954931 Free PMC article.
-
SECIS-SBP2 interactions dictate selenocysteine incorporation efficiency and selenoprotein hierarchy.EMBO J. 2000 Dec 15;19(24):6882-90. doi: 10.1093/emboj/19.24.6882. EMBO J. 2000. PMID: 11118223 Free PMC article.
-
Mechanism and regulation of selenoprotein synthesis.Annu Rev Nutr. 2003;23:17-40. doi: 10.1146/annurev.nutr.23.011702.073318. Epub 2003 Jan 8. Annu Rev Nutr. 2003. PMID: 12524431 Review.
-
[Selenoproteins--atypical function of the UGA codon].Postepy Hig Med Dosw. 1999;53(4):601-16. Postepy Hig Med Dosw. 1999. PMID: 10544661 Review. Polish.
Cited by
-
How selenium has altered our understanding of the genetic code.Mol Cell Biol. 2002 Jun;22(11):3565-76. doi: 10.1128/MCB.22.11.3565-3576.2002. Mol Cell Biol. 2002. PMID: 11997494 Free PMC article. Review. No abstract available.
-
Ribosome Fate during Decoding of UGA-Sec Codons.Int J Mol Sci. 2021 Dec 8;22(24):13204. doi: 10.3390/ijms222413204. Int J Mol Sci. 2021. PMID: 34948001 Free PMC article. Review.
-
The efficiency of selenocysteine incorporation is regulated by translation initiation factors.J Mol Biol. 2010 Jul 23;400(4):659-64. doi: 10.1016/j.jmb.2010.05.026. Epub 2010 May 19. J Mol Biol. 2010. PMID: 20488192 Free PMC article.
-
Regulation of gene expression by stop codon recoding: selenocysteine.Gene. 2003 Jul 17;312:17-25. doi: 10.1016/s0378-1119(03)00588-2. Gene. 2003. PMID: 12909337 Free PMC article. Review.
-
Ex vivo correction of selenoprotein N deficiency in rigid spine muscular dystrophy caused by a mutation in the selenocysteine codon.Nucleic Acids Res. 2008 Jan;36(1):237-44. doi: 10.1093/nar/gkm1033. Epub 2007 Nov 19. Nucleic Acids Res. 2008. PMID: 18025044 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources