Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jul 15;61(14):5370-3.

Cloning and characterization of a human polyamine oxidase that is inducible by polyamine analogue exposure

Affiliations
  • PMID: 11454677

Cloning and characterization of a human polyamine oxidase that is inducible by polyamine analogue exposure

Y Wang et al. Cancer Res. .

Abstract

Mammalian polyamine catabolism is under the control of two enzymes, spermidine/spermine N1-acetyltransferase and the flavin adenine dinucleotide-dependent polyamine oxidase (PAO). In this study, the cloning and initial characterization of human PAO is reported. A 1894-bp cDNA with an open reading frame of 1668-bp codes for a protein of 555 amino acids. In vitro transcription/translation of this cDNA clone produces the expected M(r) 61,900 protein with PAO activity. The PAO activity of this clone is inhibited by MDL 72,527, a specific inhibitor of mammalian PAO. However, neither pargyline, a specific monoamine oxidase inhibitor, nor semicarbazide, a specific diamine oxidase inhibitor, inhibits the PAO activity of this clone. PAO has been referred to as being constitutively expressed. However, 24-h exposure of a non-small cell lung carcinoma cell line, NCI H157, to 10 microM of N1,N"-bis(ethyl)norspermine results in approximately 5-fold induction of PAO mRNA and a >3-fold induction of PAO activity. These results demonstrate that in at least one cell type, PAO is up-regulated in response to polyamine analogue exposure. The PAO clone described here should provide a useful tool, which will facilitate the dissection of the role of polyamine catabolism in normal growth and in response to the antitumor polyamine analogues.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources