Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Aug;29(8):1096-101.

Glucuronidation of 1-hydroxypyrene by human liver microsomes and human UDP-glucuronosyltransferases UGT1A6, UGT1A7, and UGT1A9: development of a high-sensitivity glucuronidation assay for human tissue

Affiliations
  • PMID: 11454727

Glucuronidation of 1-hydroxypyrene by human liver microsomes and human UDP-glucuronosyltransferases UGT1A6, UGT1A7, and UGT1A9: development of a high-sensitivity glucuronidation assay for human tissue

L Luukkanen et al. Drug Metab Dispos. 2001 Aug.

Abstract

Human UDP-glucuronosyltransferases (UGT, EC 2.4.1.17) involved in the biotransformation of pyrene were investigated by a sensitive fluorometric high-performance liquid chromatography (HPLC)method developed for determining activities toward 1-hydroxypyrene. The endpoint metabolite of pyrene, 1-pyrenylglucuronide, is a well-known urinary biomarker for the assessment of human exposure to polycyclic aromatic hydrocarbons. 1-Pyrenylglucuronide was synthesized using rat liver microsomes as biocatalyst. The yield was satisfactory, 22%. 1-Pyrenylglucuronide, identified by (1)H NMR and by electrospray mass spectrometry, was used for method validation and calibration. The HPLC assay was very sensitive with a quantitation limit of 3 pg (8 fmol) for 1-pyrenylglucuronide. The assay was precise, showing a relative standard deviation of 5% or less at 0.1 to 300 microM 1-hydroxypyrene. Only 2 microg of microsomal protein was required for the assay in human liver. The glucuronidation of 1-hydroxypyrene was catalyzed at high rates in microsomes from pooled or three individual liver samples, showing comparable apparent K(m) values. The formation of 1-pyrenylglucuronide was catalyzed by recombinant human UGT1A6, UGT1A7, and UGT1A9, the K(m) values being 45, 12, and 1 microM, respectively. The apparent K(m) values in human liver microsomes, ranging from 6.9 to 8.6 microM, agreed well with these results. The method provides a sensitive tool for measuring extremely low UGT activities and a specific means for assessing interindividual differences in 1-hydroxypyrene-metabolizing UGT activities in human liver and other tissues.

PubMed Disclaimer