Hebbian learning reconsidered: representation of static and dynamic objects in associative neural nets
- PMID: 11455966
- DOI: 10.1007/BF00204701
Hebbian learning reconsidered: representation of static and dynamic objects in associative neural nets
Abstract
According to Hebb's postulate for learning, information presented to a neural net during a learning session is stored in synaptic efficacies. Long-term potentiation occurs only if the postsynaptic neuron becomes active in a time window set up by the presynaptic one. We carefully interpret and mathematically implement the Hebb rule so as to handle both stationary and dynamic objects such as single patterns and cycles. Since the natural dynamics contains a rather broad distribution of delays, the key idea is to incorporate these delays in the learning session. As theory and numerical simulations show, the resulting procedure is surprisingly robust and faithful. It also turns out the pure Hebbian learning is by selection: the network produces synaptic representations that are selected according to their resonance with the input percepts.
Similar articles
-
Anti-Hebbian learning in a non-linear neural network.Biol Cybern. 1990;64(2):171-6. doi: 10.1007/BF02331347. Biol Cybern. 1990. PMID: 2291904
-
Continuous neural network with windowed Hebbian learning.Biol Cybern. 2015 Jun;109(3):321-32. doi: 10.1007/s00422-015-0645-7. Epub 2015 Feb 13. Biol Cybern. 2015. PMID: 25677526
-
Hebbian errors in learning: an analysis using the Oja model.J Theor Biol. 2009 Jun 21;258(4):489-501. doi: 10.1016/j.jtbi.2009.01.036. Epub 2009 Feb 25. J Theor Biol. 2009. PMID: 19248792
-
Donald O. Hebb's synapse and learning rule: a history and commentary.Neurosci Biobehav Rev. 2005 Jan;28(8):851-74. doi: 10.1016/j.neubiorev.2004.09.009. Neurosci Biobehav Rev. 2005. PMID: 15642626 Review.
-
Synaptic modification by correlated activity: Hebb's postulate revisited.Annu Rev Neurosci. 2001;24:139-66. doi: 10.1146/annurev.neuro.24.1.139. Annu Rev Neurosci. 2001. PMID: 11283308 Review.
Cited by
-
Metastable attractors explain the variable timing of stable behavioral action sequences.Neuron. 2022 Jan 5;110(1):139-153.e9. doi: 10.1016/j.neuron.2021.10.011. Epub 2021 Oct 29. Neuron. 2022. PMID: 34717794 Free PMC article.
-
Learning navigational maps through potentiation and modulation of hippocampal place cells.J Comput Neurosci. 1997 Jan;4(1):79-94. doi: 10.1023/a:1008820728122. J Comput Neurosci. 1997. PMID: 9046453
-
The dynamics of sparse random networks.Biol Cybern. 1993;70(2):177-87. doi: 10.1007/BF00200831. Biol Cybern. 1993. PMID: 8312406
-
Spiking neurons that keep the rhythm.J Comput Neurosci. 2011 Jun;30(3):589-605. doi: 10.1007/s10827-010-0280-1. Epub 2010 Oct 1. J Comput Neurosci. 2011. PMID: 20886275
-
Probabilistic associative learning suffices for learning the temporal structure of multiple sequences.PLoS One. 2019 Aug 1;14(8):e0220161. doi: 10.1371/journal.pone.0220161. eCollection 2019. PLoS One. 2019. PMID: 31369571 Free PMC article.
References
MeSH terms
LinkOut - more resources
Research Materials