Photoisomerization by hula-twist: a fundamental supramolecular photochemical reaction
- PMID: 11456473
- DOI: 10.1021/ar000165c
Photoisomerization by hula-twist: a fundamental supramolecular photochemical reaction
Abstract
The volume-conserving hula-twist cis/trans isomerization process has been incorporated in a general scheme for photoisomerization of polyenes, applicable to small organic molecules as well as to protein-bound polyene chromophores. The main theme is that in solution the conventional one-bond-flip mechanism dominates, while in frozen media (or under other forms of supramolecular constraint) the hula-twist mechanism takes over. Literature examples of photoisomerization obtained under confined conditions have been critically reviewed, the applicability of HT has been examined, and new systems unambiguously testing this volume-conserving process are proposed.
Similar articles
-
Mechanisms of photoisomerization of polyenes in confined media: from organic glasses to protein binding cavities.Photochem Photobiol. 2007 Jan-Feb;83(1):2-10. doi: 10.1562/2006-01-27-RA-786. Photochem Photobiol. 2007. PMID: 16719559
-
Examples of hula-twist in photochemical cis- trans isomerization.Chemistry. 2001 Nov 5;7(21):4537-44. doi: 10.1002/1521-3765(20011105)7:21<4536::aid-chem4536>3.0.co;2-n. Chemistry. 2001. PMID: 11757644
-
The case of medium-dependent dual mechanisms for photoisomerization: one-bond-flip and hula-twist.Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11153-8. doi: 10.1073/pnas.210323197. Proc Natl Acad Sci U S A. 2000. PMID: 11016972 Free PMC article. Review.
-
Introduction to the symposium-in-print: photoisomerization pathways, torsional relaxation and the hula twists.Photochem Photobiol. 2002 Dec;76(6):580-3. doi: 10.1562/0031-8655(2002)076<0580:ittsip>2.0.co;2. Photochem Photobiol. 2002. PMID: 12511036 Review.
-
Photochemical reactivity of polyenes: from dienes to rhodopsin, from microseconds to femtoseconds.Photochem Photobiol Sci. 2003 Aug;2(8):835-44. doi: 10.1039/b304027e. Photochem Photobiol Sci. 2003. PMID: 14521218 Review.
Cited by
-
Crystal structure of a far-red-sensing cyanobacteriochrome reveals an atypical bilin conformation and spectral tuning mechanism.Proc Natl Acad Sci U S A. 2021 Mar 23;118(12):e2025094118. doi: 10.1073/pnas.2025094118. Proc Natl Acad Sci U S A. 2021. PMID: 33727422 Free PMC article.
-
Structural Evidence of Photoisomerization Pathways in Fluorescent Proteins.J Am Chem Soc. 2019 Oct 2;141(39):15504-15508. doi: 10.1021/jacs.9b08356. Epub 2019 Sep 24. J Am Chem Soc. 2019. PMID: 31533429 Free PMC article.
-
Fluorescent aggregates of 1-(p-butyloxyphenyl)-4-(p-cyanophenyl)buta-1E,3E-diene: temperature sensing and photoimaging applications.J Fluoresc. 2005 Sep;15(5):749-53. doi: 10.1007/s10895-005-2983-7. J Fluoresc. 2005. PMID: 16341793
-
G protein-coupled receptor rhodopsin: a prospectus.Annu Rev Physiol. 2003;65:851-79. doi: 10.1146/annurev.physiol.65.092101.142611. Epub 2002 May 1. Annu Rev Physiol. 2003. PMID: 12471166 Free PMC article. Review.
-
Analogies and Differences in the Photoactivation Mechanism of Bathy and Canonical Bacteriophytochromes Revealed by Multiscale Modeling.J Phys Chem Lett. 2024 Aug 8;15(31):8078-8084. doi: 10.1021/acs.jpclett.4c01823. Epub 2024 Aug 1. J Phys Chem Lett. 2024. PMID: 39087732 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources