Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001;104(4):1119-25.
doi: 10.1016/s0306-4522(01)00128-2.

Altered content and modulation of soluble guanylate cyclase in the cerebellum of rats with portacaval anastomosis

Affiliations

Altered content and modulation of soluble guanylate cyclase in the cerebellum of rats with portacaval anastomosis

P Monfort et al. Neuroscience. 2001.

Abstract

It is shown that the glutamate-NO-cGMP pathway is impaired in cerebellum of rats with portacaval anastomosis in vivo as assessed by in vivo brain microdialysis in freely moving rats. NMDA-induced increase in extracellular cGMP in the cerebellum was significantly reduced (by 27%) in rats with portacaval anastomosis. Activation of soluble guanylate cyclase by the NO-generating agent S-nitroso-N-acetyl-penicillamine and by the NO-independent activator YC-1 was also significantly reduced (by 35-40%), indicating that portacaval anastomosis leads to remarkable alterations in the modulation of guanylate cyclase in cerebellum. Moreover, the content of soluble guanylate cyclase was increased ca. two-fold in the cerebellum of rats with portacaval anastomosis. Activation of soluble guanylate cyclase by NO was higher in lymphocytes isolated from rats with portacaval anastomosis (3.3-fold) than in lymphocytes from control rats (2.1-fold). The results reported show that the content and modulation of soluble guanylate cyclase are altered in brain of rats with hepatic failure, resulting in altered function of the glutamate-NO-cGMP pathway in the rat in vivo. This may lead to alterations in cerebral processes such as intercellular communication, circadian rhythms, including the sleep-waking cycle, long-term potentiation, and some forms of learning and memory.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources