Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Aug;91(2):973-83.
doi: 10.1152/jappl.2001.91.2.973.

Invited review: arteriolar smooth muscle mechanotransduction: Ca(2+) signaling pathways underlying myogenic reactivity

Affiliations
Free article
Review

Invited review: arteriolar smooth muscle mechanotransduction: Ca(2+) signaling pathways underlying myogenic reactivity

M A Hill et al. J Appl Physiol (1985). 2001 Aug.
Free article

Abstract

The smooth muscle of arterioles responds to an increase in intraluminal pressure with vasoconstriction and with vasodilation when pressure is decreased. Such myogenic vasoconstriction provides a level of basal tone that enables arterioles to appropriately adjust diameter in response to neurohumoral stimuli. Key in this process of mechanotransduction is the role of changes in intracellular Ca(2+). However, it is becoming clear that considerable complexity exists in the spatiotemporal characteristics of the Ca(2+) signal and that changes in intracellular Ca(2+) may play roles other than direct effects on the contractile process via activation of myosin light-chain phosphorylation. The involvement of Ca(2+) may extend to modulation of ion channels and release of Ca(2+) from the sarcoplasmic reticulum, alterations in Ca(2+) sensitivity, and coupling between cells within the vessel wall. The purpose of this brief review is to summarize the current literature relating to Ca(2+) and the arteriolar myogenic response. Consideration is given to coupling of Ca(2+) changes to the mechanical stimuli, sources of Ca(2+), involvement of ion channels, and spatiotemporal aspects of intracellular Ca(2+) signaling.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources