Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Aug;91(2):1004-10.
doi: 10.1152/jappl.2001.91.2.1004.

Selected contribution: effects of ischemia-reperfusion on vascular contractility and alpha(1)-adrenergic-receptor signaling in the rat tail artery

Affiliations
Free article

Selected contribution: effects of ischemia-reperfusion on vascular contractility and alpha(1)-adrenergic-receptor signaling in the rat tail artery

T M Seasholtz et al. J Appl Physiol (1985). 2001 Aug.
Free article

Abstract

To determine the effects of ischemia-reperfusion (I/R) on alpha(1)-adrenergic-receptor (alpha(1)-AR) functions, alpha(1)-AR-mediated contraction, inositol phosphate (IP) accumulation, and alpha(1)-AR-G protein coupling were examined in the tail arteries of anesthetized rats after 60 min of ischemia and 60 min of reperfusion. The contractile response to norepinephrine (NE) was significantly increased after I/R, whereas the contractile response to KCl remained unchanged. This was accompanied by a 69% increase in NE-stimulated IP accumulation. Furthermore, receptor-stimulated coupling of alpha(1a)-AR to G alpha(q/11) proteins was increased, whereas the coupling of alpha(1b)-AR or alpha(1d)-AR to their G proteins was not altered by I/R. These changes in vascular alpha(1)-AR function occurred without concurrent alteration in expression levels of membrane alpha(1)-AR subtypes or in the associated G proteins. These data demonstrate that I/R increases alpha(1a)-AR-G(q/11) protein coupling and alpha(1)-AR-stimulated IP accumulation in the tail artery. The alterations in alpha(1)-AR signaling are associated with and may underlie the enhanced contractile response of the tail artery to adrenergic stimulation after I/R.

PubMed Disclaimer

Comment in

MeSH terms

LinkOut - more resources