Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Jun;265(4):654-62.
doi: 10.1007/s004380100459.

Origin, diversity and evolution of NBS-type disease-resistance gene homologues in coffee trees (Coffea L.)

Affiliations
Comparative Study

Origin, diversity and evolution of NBS-type disease-resistance gene homologues in coffee trees (Coffea L.)

S Noir et al. Mol Genet Genomics. 2001 Jun.

Abstract

The majority of plant disease-resistance genes (R-genes) isolated so far encode a predicted nucleotide-binding site (NBS) domain. NBS domains related to R-genes show a highly conserved backbone of amino acid motifs, which makes it possible to isolate resistance gene analogues (RGAs) by PCR with degenerate primers. Multiple combinations of primers with low degeneracy, designed from two conserved motifs in the NBS regions of R-genes of various plants, were used on genomic DNA from coffee trees, an important perennial tropical crop. Nine distinct classes of RGAs of the NBS-like type, representing a highly diverse sample, were isolated from Coffea arabica and C. canephora species. The analysis of one coffee RGA family suggested point mutations as the primary source of diversity. With one exception, coffee RGA families appeared to be closely related in sequence to at least one cloned R-gene. In addition, deduced amino acid sequences of coffee RGAs were identified that showed strong sequence similarity to almost all known non-TIR (Toll/Interleukin 1 Receptor)-type R-genes. The high degree of similarity between particular coffee RGAs and R-genes isolated from other angiosperm species, such as Arabidopsis, tomato and rice, indicates an ancestral relationship and the existence of common ancestors. The data obtained from coffee species suggests that the evolution of NBS-encoding sequences involves the gradual accumulation of mutations and slow rates of divergence within distinct R-gene families, rather than being a rapid process. Functional inferences drawn from the suggested pattern of evolution of NBS-type R-genes is also discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources