Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Apr-Jun;18(2):129-43.

Cationic lipid-mediated transfection in vitro and in vivo (review)

Affiliations
  • PMID: 11463205
Review

Cationic lipid-mediated transfection in vitro and in vivo (review)

S Audouy et al. Mol Membr Biol. 2001 Apr-Jun.

Abstract

Recent rapid developments in genomics will likely lead to a rapid expansion in identifying defective genes causing a variety of diseases, implying a vast increase in the number of therapeutic targets. Treatment of such diseases may include strategies ranging from gene delivery and replacement to antisense approaches. For successful development of gene therapies, a minimal requirement involves the engineering of appropriate gene- or oligonucleotide-carrier systems, which are necessary for protective purposes (against nucleases) and transport (to target tissue and cells in vivo). Further, they should also display the propensity to efficiently translocate the oligonucleotides and gene constructs into cells, via passage across several membrane barriers. The emphasis in this review will be on the use of cationic lipids for that purpose. Crucial to successful application of this sophisticated technology in vivo will be a need for a better understanding of fundamental and structural parameters that govern transfection efficiency, including the issues of cationic lipid/DNA complex assembly (with or without helper lipid), stability towards biological fluids, complex-target membrane interaction and translocation, and gene-integration into the nucleus. Biophysical and biochemical characterization of so-called lipoplexes, and their interaction with cells in vitro, are considered instrumental in reaching such insight. Here, most recent advances in cationic lipid-mediated gene delivery are discussed from such a perspective.

PubMed Disclaimer

LinkOut - more resources