Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Aug 1;357(Pt 3):819-26.
doi: 10.1042/0264-6021:3570819.

Possible mechanisms involved in the down-regulation of translation during transient global ischaemia in the rat brain

Affiliations

Possible mechanisms involved in the down-regulation of translation during transient global ischaemia in the rat brain

C Martín de la Vega et al. Biochem J. .

Abstract

The striking correlation between neuronal vulnerability and down-regulation of translation suggests that this cellular process plays a critical part in the cascade of pathogenetic events leading to ischaemic cell death. There is compelling evidence supporting the idea that inhibition of translation is exerted at the polypeptide chain initiation step, and the present study explores the possible mechanism/s implicated. Incomplete forebrain ischaemia (30 min) was induced in rats by using the four-vessel occlusion model. Eukaryotic initiation factor (eIF)2, eIF4E and eIF4E-binding protein (4E-BP1) phosphorylation levels, eIF4F complex formation, as well as eIF2B and ribosomal protein S6 kinase (p70(S6K)) activities, were determined in different subcellular fractions from the cortex and the hippocampus [the CA1-subfield and the remaining hippocampus (RH)], at several post-ischaemic times. Increased phosphorylation of the alpha subunit of eIF2 (eIF2 alpha) and eIF2B inhibition paralleled the inhibition of translation in the hippocampus, but they normalized to control values, including the CA1-subfield, after 4--6 h of reperfusion. eIF4E and 4E-BP1 were significantly dephosphorylated during ischaemia and total eIF4E levels decreased during reperfusion both in the cortex and hippocampus, with values normalizing after 4 h of reperfusion only in the cortex. Conversely, p70(S6K) activity, which was inhibited in both regions during ischaemia, recovered to control values earlier in the hippocampus than in the cortex. eIF4F complex formation diminished both in the cortex and the hippocampus during ischaemia and reperfusion, and it was lower in the CA1-subfield than in the RH, roughly paralleling the observed decrease in eIF4E and eIF4G levels. Our findings are consistent with a potential role for eIF4E, 4E-BP1 and eIF4G in the down-regulation of translation during ischaemia. eIF2 alpha, eIF2B, eIF4G and p70(S6K) are positively implicated in the translational inhibition induced at early reperfusion, whereas eIF4F complex formation is likely to contribute to the persistent inhibition of translation observed at longer reperfusion times.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Acta Neuropathol. 1999 Nov;98(5):493-505 - PubMed
    1. Physiol Rev. 1999 Oct;79(4):1431-568 - PubMed
    1. Biochem J. 2000 Oct 15;351 Pt 2:327-34 - PubMed
    1. J Neurochem. 2000 Dec;75(6):2335-45 - PubMed
    1. Neuroreport. 2001 Apr 17;12(5):1021-5 - PubMed

Publication types

MeSH terms

Substances