Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 May 15;55(2):155-64.
doi: 10.1016/s0361-9230(01)00510-x.

Iron and neurodegenerative disorders

Affiliations
Review

Iron and neurodegenerative disorders

K J Thompson et al. Brain Res Bull. .

Abstract

The brain shares with other organs the need for a constant and readily available supply of iron and has a similar array of proteins available to it for iron transport, storage, and regulation. However, unlike other organs, the brain places demands on iron availability that are regional, cellular, and age sensitive. Failure to meet these demands for iron with an adequate supply in a timely manner can result in persistent neurological and cognitive dysfunction. Consequently, the brain has developed mechanisms to maintain a continuous supply of iron. However, in a number of common neurodegenerative disorders, there appears to be an excess accumulation of iron in the brain that suggests a loss of the homeostatic mechanisms responsible for regulating iron in the brain. These systems are reviewed in this article. As a result of a loss in iron homeostasis, the brain becomes vulnerable to iron-induced oxidative stress. Oxidative stress is a confounding variable in understanding the cell death that may result directly from a specific disease and is a contributing factor to the disease process. The underlying pathogenic event in oxidative stress is cellular iron mismanagement.

PubMed Disclaimer

MeSH terms

LinkOut - more resources