Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Aug;22(8):1213-9.
doi: 10.1093/carcin/22.8.1213.

Restoration of retinoic acid concentration suppresses ethanol-enhanced c-Jun expression and hepatocyte proliferation in rat liver

Affiliations

Restoration of retinoic acid concentration suppresses ethanol-enhanced c-Jun expression and hepatocyte proliferation in rat liver

J Chung et al. Carcinogenesis. 2001 Aug.

Abstract

Chronic and excessive ethanol intake decreases hepatic retinoic acid (RA) concentrations, which may play a critical role in ethanol-induced hyperproliferation in hepatocytes. The present study was conducted to determine whether RA supplementation in chronic ethanol-fed rats could restore hepatic RA concentrations to normal levels and modulate hepatocyte hyperproliferation. Male Sprague-Dawley rats were divided into four groups: control, ethanol-fed, ethanol-fed + 50 microg all-trans-RA/kg body wt and ethanol-fed + 100 microg all-trans-RA/kg body wt. Ethanol was given to rats at 6.2% (v/v) in a liquid diet to provide 36% of total caloric intake. Control animals received the same amount of liquid diet with isocaloric maltodextrin in place of ethanol. Results show that the ethanol treatment in rats for a month significantly increased the mean number of proliferating cell nuclear antigen (PCNA)-positive hepatocytes [4.96 +/- 1.36% (ethanol-fed) versus 0.29 +/- 0.08% (control), P < 0.05]. This increase was associated with the induction of hepatic c-Jun protein (6.5-fold increase) and cyclin D1 protein (3-fold increase) in ethanol-fed animals as compared with controls. Furthermore, activator protein 1 (AP-1) DNA-binding activity was significantly higher in hepatic nuclear extracts from ethanol-fed rats than those from controls. In contrast, RA supplementation in ethanol-fed rats raised hepatic RA concentration to normal levels and almost completely abolished the ethanol-enhanced c-Jun, cyclin D and AP-1 DNA-binding activities. Moreover, RA supplementation at both doses markedly suppressed the ethanol-induced PCNA-positive hepatocytes by approximately 80%. These results demonstrate that the restoration of hepatic RA concentrations by dietary RA supplementation suppresses ethanol-induced hepatocyte proliferation via inhibiting c-Jun overexpression, and suggest that RA may play a role in preventing or reversing certain types of ethanol-induced liver injury.

PubMed Disclaimer

Publication types