Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Aug 15;184(4):418-28.
doi: 10.1086/322047. Epub 2001 Jul 16.

The molecular basis of nonoxynol-9-induced vaginal inflammation and its possible relevance to human immunodeficiency virus type 1 transmission

Affiliations

The molecular basis of nonoxynol-9-induced vaginal inflammation and its possible relevance to human immunodeficiency virus type 1 transmission

R N Fichorova et al. J Infect Dis. .

Abstract

Topical microbicides are being sought to prevent sexually transmitted diseases by inactivating pathogens while preserving or enhancing the natural mucosal barrier. Serious public health concerns were raised by a recent phase 3 clinical trial that showed that nonoxynol-9 (N-9), a leading microbicide candidate widely used as an over-the-counter spermicide, may actually increase human immunodeficiency virus type 1 (HIV-1) transmission. The present study links N-9-induced vaginal inflammation to increased risk of HIV-1 infection. Analysis of molecular and cellular components in cervicovaginal secretions, as well as results from in vitro activation of cervicovaginal epithelial cells and U1/HIV promonocytic cells, showed that multiple N-9 use can promote HIV-1 transmission through interleukin-1-mediated NF-kappaB activation, which leads to chemokine-induced recruitment of HIV-1 host cells and increased HIV-1 replication in infected cells. Furthermore, this study identifies in vitro and in vivo model systems for monitoring undesirable proinflammatory effects of microbicides and other vaginal products.

PubMed Disclaimer

Publication types

MeSH terms