Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Aug;50(8):1872-82.
doi: 10.2337/diabetes.50.8.1872.

Small increases in insulin inhibit hepatic glucose production solely caused by an effect on glycogen metabolism

Affiliations

Small increases in insulin inhibit hepatic glucose production solely caused by an effect on glycogen metabolism

D S Edgerton et al. Diabetes. 2001 Aug.

Abstract

Based on our earlier work, a 2.5-fold increase in insulin secretion should completely inhibit hepatic glucose production through the hormone's direct effect on hepatic glycogen metabolism. The aim of the present study was to test the accuracy of this prediction and to confirm that gluconeogenic flux, as measured by three independent techniques, was unaffected by the increase in insulin. A 40-min basal period was followed by a 180-min experimental period in which an increase in insulin was induced, with euglycemia maintained by peripheral glucose infusion. Arterial and hepatic sinusoidal insulin levels increased from 10 +/- 2 to 19 +/- 3 and 20 +/- 4 to 45 +/- 5 microU/ml, respectively. Net hepatic glucose output decreased rapidly from 1.90 +/- 0.13 to 0.23 +/- 0.16 mg. kg(-1). min(-1). Three methods of measuring gluconeogenesis and glycogenolysis were used: 1) the hepatic arteriovenous difference technique (n = 8), 2) the [(14)C]phosphoenolpyruvate technique (n = 4), and 3) the (2)H(2)O technique (n = 4). The net hepatic glycogenolytic rate decreased from 1.72 +/- 0.20 to -0.28 +/- 0.15 mg. kg(-1). min(-1) (P < 0.05), whereas none of the above methods showed a significant change in hepatic gluconeogenic flux (rate of conversion of phosphoenolpyruvate to glucose-6-phosphate). These results indicate that liver glycogenolysis is acutely sensitive to small changes in plasma insulin, whereas gluconeogenic flux is not.

PubMed Disclaimer

Publication types

MeSH terms