Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Aug;50(8):1918-26.
doi: 10.2337/diabetes.50.8.1918.

Angiotensin II promotes glucose-induced activation of cardiac protein kinase C isozymes and phosphorylation of troponin I

Affiliations

Angiotensin II promotes glucose-induced activation of cardiac protein kinase C isozymes and phosphorylation of troponin I

A Malhotra et al. Diabetes. 2001 Aug.

Abstract

Activation of the protein kinase C (PKC) family is a potential signaling mechanism by which high ambient glucose concentration modulates the phenotype and physiological function of cells. Recently, the cardiac renin angiotensin system (RAS) has been reported to promote PKC translocation in the diabetic heart via the angiotensin (ANG) II type 1 receptor (AT-1R). To evaluate the molecular events coupled with high glucose-induced PKC translocation and to examine the role of endogenously released ANG II in myocyte PKC signaling, primary cultures of adult rat ventricular myocytes were exposed to normal (5 mmol/l) or high (25 mmol/l) glucose for 12-24 h. Western blot analysis indicated that adult rat ventricular myocytes coexpress six PKC isozymes (alpha, beta(1,) beta(2,) delta, epsilon, and zeta). Translocation of five PKC isozymes (beta(1), beta(2), delta, epsilon, and zeta) was detected in response to 25 mmol/l glucose. Inhibition of phospholipase C with tricyclodecan-9-yl-xanthogenate blocked glucose-induced translocation of PKC-beta(2), -delta, and -zeta. Inhibition of tyrosine kinase with genistein blocked glucose-induced translocation of PKC-beta(1) and -delta, whereas chelation of intracellular Ca(2+) with 1,2-bis(2-aminophenoxy)ethane N,N,N,'N'-tetraacetic acid blocked translocation of PKC-beta(1) and -beta(2). Enzyme-linked immunosorbent assay performed on culture media from myocytes maintained in 25 mmol/l glucose detected a twofold increase in ANG II. Addition of an AT-1R antagonist (losartan; 100 nmol/l) to myocyte cultures blocked translocation of PKC-beta(1), -beta(2), -delta, and -epsilon. Phosphorylation of troponin (Tn) I was increased in myocytes exposed to 25 mmol/l glucose. Losartan selectively inhibited Tn I serine phosphorylation but did not affect phosphorylation at threonine residues. We concluded that 1) 25 mmol/l glucose triggers the release of ANG II by myocytes, resulting in activation of the ANG II autocrine pathway; 2) differential translocation of myocyte PKC isozymes occurs in response to 25 mmol/l glucose and ANG II; and 3) AT-1R-dependent PKC isozymes (beta(1), beta(2), delta, and epsilon) target Tn I serine residues.

PubMed Disclaimer

Publication types

MeSH terms

Substances