Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jul 26;412(6845):456-61.
doi: 10.1038/35086609.

RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes

Affiliations

RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes

S H Bae et al. Nature. .

Abstract

Extensive work on the maturation of lagging strands during the replication of simian virus 40 DNA suggests that the initiator RNA primers of Okazaki fragments are removed by the combined action of two nucleases, RNase HI and Fen1, before the Okazaki fragments join. Despite the well established in vitro roles of these two enzymes, genetic analyses in yeast revealed that null mutants of RNase HI and/or Fen1 are not lethal, suggesting that an additional enzymatic activity may be required for the removal of RNA. One such enzyme is the Saccharomyces cerevisiae Dna2 helicase/endonuclease, which is essential for cell viability and is well suited to removing RNA primers of Okazaki fragments. In addition, Dna2 interacts genetically and physically with several proteins involved in the elongation or maturation of Okazaki fragments. Here we show that the endonucleases Dna2 and Fen1 act sequentially to facilitate the complete removal of the primer RNA. The sequential action of these enzymes is governed by a single-stranded DNA-binding protein, replication protein-A (RPA). Our results demonstrate that the processing of Okazaki fragments in eukaryotes differs significantly from, and is more complicated than, that occurring in prokaryotes. We propose a novel biochemical mechanism for the maturation of eukaryotic Okazaki fragments.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms