Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Summer;7(2):172-98.
doi: 10.1111/j.1527-3458.2001.tb00194.x.

Gacyclidine: a new neuroprotective agent acting at the N-methyl-D-aspartate receptor

Affiliations
Review

Gacyclidine: a new neuroprotective agent acting at the N-methyl-D-aspartate receptor

H Hirbec et al. CNS Drug Rev. 2001 Summer.

Abstract

Gacyclidine is a new phencyclidine derivative with neuroprotective properties. Tritiated gacyclidine and its enantiomers bind to NMDA receptors with binding parameters similar to those of other non-competitive NMDA receptor antagonists. The (-)enantiomer, (-)GK11, exhibits an affinity (2.5 nM) similar to that of dizocilpine (MK-801), while the (+)enantiomer, (+)GK11, has a 10 times lower affinity. When its interaction with NMDA receptors is prevented, gacyclidine binds also to "non-NMDA" binding sites which are mainly located in the molecular layer of the cerebellum on the dendritic tree of Purkinje cells. These binding sites do not appear to be related to any known neurotransmitters. In primary cortical cultures, gacyclidine and its enantiomers, at 0.1 to 5.0 microM, prevent glutamate-induced neuronal death. In rats, in vivo neurotoxicity of gacyclidine is far low than that of MK-801. No necrotic neurons were detected in animals sacrificed at 18 or 96 h after treatment with gacyclidine (1, 5, 10 or 20 mg/kg i.v.). At the highest (20 mg/kg) but not the lower doses (1-100 mg/kg) electron microscopy revealed the presence of few cytoplasmic or intramitochondrial vacuoles. In soman-treated monkeys gacyclidine enhanced neuroprotective activity of "three drugs cocktail" (atropine + diazepam + pralidoxime). Moreover, in rats, gacyclidine exerts a dose- and time-dependent neuroprotection in three models of spinal cord lesion. Beneficial effects of gacyclidine include reduction of lesion size and improvement of functional parameters after injury. In traumatic brain injury models gacyclidine improves also behavioral parameters and neuronal survival. Optimal protection is obtained when gacyclidine is administered at 0 to 30 min after injury. It is, therefore, concluded that gacyclidine exhibits neuroprotective effects similar to those of other NMDA receptor antagonists, with the advantage of being substantially less neurotoxic maybe due to its interaction with "non-NMDA" binding sites.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Allen AR. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column. A preliminary study. JAMA 1911;57:878–880.
    1. Allen HL, Iversen LL. Phencyclidine, dizocilpine, and cerebrocortical neurons. Science 1990;247:221. - PubMed
    1. Baker AJ, Moulton RJ, MacMillan VH, Shedden PM. Excitatory amino acids in cerebrospinal fluid following traumatic brain injury in humans. J Neurosurg 1993;79:369–372. - PubMed
    1. Baudy RB. Agents for the treatment of neurodegenerative diseases: July‐December 1997. Exp Opin Ther Patents 1998;8:395–438.
    1. Benveniste H, Drejer J, Schousboe A, Diemer NH. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 1984;43:1369–1374. - PubMed

MeSH terms

LinkOut - more resources