Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Jun 29;69(6):637-46.
doi: 10.1016/s0024-3205(01)01153-5.

Protective effect of polysaccharides-enriched fraction from Angelica sinensis on hepatic injury

Affiliations
Comparative Study

Protective effect of polysaccharides-enriched fraction from Angelica sinensis on hepatic injury

Y N Ye et al. Life Sci. .

Abstract

A polysaccharides-enriched fraction from the root of Angelica sinensis, which is known for its antiulcer action on the gastrointestinal tract, was isolated and studied for its hepato-protective effect in rodents. Intra-gastric administration of Angelica sinensis polysaccharides-enriched fraction (AP) at the doses of 50 or 75 mg/kg dose-dependently prevented liver toxicity induced by acetaminophen in mice but did not affect the serum acetaminophen concentration. It normalized the rises of serum alanine transferase (ALT) and hepatic nitric oxide synthase (NOS) activities and the decrease of glutathione level in the liver. It also reduced the hepatic malondialdehyde (MDA) concentration. The protective effect was less evident in the carbon tetrachloride (CCl4)-treated animals including mice and rats. In the rat the elevated serum ALT level was unaffected though the MDA level was similarly reduced by the higher dose of AP. In these animals, CCl4 increased the hepatic glutathione level instead while the NOS activity remained unchanged. These findings suggest that the pathogenic mechanisms of both acetaminophen and CCl4 are different. AP is more effective in the protection against liver damage induced by acetaminophen, which is associated with the glutathione depletion and nitric oxide synthase activation in the liver.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources