Studying rhythmogenesis of breathing: comparison of in vivo and in vitro models
- PMID: 11476886
- DOI: 10.1016/s0166-2236(00)01867-1
Studying rhythmogenesis of breathing: comparison of in vivo and in vitro models
Abstract
In all mammalian species, breathing is controlled by a neuronal network within the lower brainstem. A component known as the ventral respiratory group produces rhythmic activity, which is transmitted to spinal motoneurons to produce a periodic contraction of respiratory muscles. A dispute about the mechanisms of 'normal' respiratory rhythm generation arose from the differences between experimental preparations that have been used to dissect the process. It is, therefore, essential to compare the various experimental approaches and to discuss the differences between experimental data. We conclude that the various preparations all have great value, but that they define different operational conditions of the network, including maturation of neurons and synaptic processes. We have taken note of these in formulating a 'maturational network-burster model' for rhythm generation that includes most features of the existing models of respiratory rhythm generation.
Similar articles
-
Respiratory rhythm generation and pattern formation: oscillators and network mechanisms.J Integr Neurosci. 2019 Dec 30;18(4):481-517. doi: 10.31083/j.jin.2019.04.188. J Integr Neurosci. 2019. PMID: 31912709 Review.
-
State-dependent contribution of the hyperpolarization-activated Na+/K+ and persistent Na+ currents to respiratory rhythmogenesis in vivo.J Neurosci. 2013 May 15;33(20):8716-28. doi: 10.1523/JNEUROSCI.5066-12.2013. J Neurosci. 2013. PMID: 23678115 Free PMC article.
-
Respiratory Rhythm Generation: The Whole Is Greater Than the Sum of the Parts.Adv Exp Med Biol. 2017;1015:147-161. doi: 10.1007/978-3-319-62817-2_9. Adv Exp Med Biol. 2017. PMID: 29080026 Review.
-
Maturational changes in the respiratory rhythm generator of the mouse.Pflugers Arch. 1995 May;430(1):115-24. doi: 10.1007/BF00373846. Pflugers Arch. 1995. PMID: 7667071
-
Neuronal mechanisms of respiratory rhythm generation: an approach using in vitro preparation.Jpn J Physiol. 1997 Oct;47(5):385-403. doi: 10.2170/jjphysiol.47.385. Jpn J Physiol. 1997. PMID: 9504127 Review.
Cited by
-
Physiological and morphological properties of Dbx1-derived respiratory neurons in the pre-Botzinger complex of neonatal mice.J Physiol. 2013 May 15;591(10):2687-703. doi: 10.1113/jphysiol.2012.250118. Epub 2013 Mar 4. J Physiol. 2013. PMID: 23459755 Free PMC article.
-
Contribution of Ca2+-dependent conductances to membrane potential fluctuations of medullary respiratory neurons of newborn rats in vitro.J Physiol. 2003 Nov 1;552(Pt 3):727-41. doi: 10.1113/jphysiol.2003.049312. Epub 2003 Aug 22. J Physiol. 2003. PMID: 12937288 Free PMC article.
-
Possible Breathing Influences on the Control of Arterial Pressure After Sino-aortic Denervation in Rats.Curr Hypertens Rep. 2018 Jan 22;20(1):2. doi: 10.1007/s11906-018-0800-3. Curr Hypertens Rep. 2018. PMID: 29356918 Review.
-
Computational models of the neural control of breathing.Wiley Interdiscip Rev Syst Biol Med. 2017 Mar;9(2):10.1002/wsbm.1371. doi: 10.1002/wsbm.1371. Epub 2016 Dec 23. Wiley Interdiscip Rev Syst Biol Med. 2017. PMID: 28009109 Free PMC article. Review.
-
Looking for inspiration: new perspectives on respiratory rhythm.Nat Rev Neurosci. 2006 Mar;7(3):232-42. doi: 10.1038/nrn1871. Nat Rev Neurosci. 2006. PMID: 16495944 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources