Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Jul;55(6):333-9.
doi: 10.1016/s0753-3322(01)00068-3.

Iron metabolism, free radicals, and oxidative injury

Affiliations
Review

Iron metabolism, free radicals, and oxidative injury

J Emerit et al. Biomed Pharmacother. 2001 Jul.

Abstract

Iron has the capacity to accept and donate electrons readily. This capability makes it physiologically essential, as a useful component of cytochromes and oxygen-binding molecules. However, iron is also biochemically dangerous; it can damage tissues by catalyzing the conversion of hydrogen peroxide to free-radical ions that attack cellular membranes, protein and DNA. This threat is reduced in the healthy state where, because of the fine iron metabolism regulation, there is never appreciable concentration of 'free iron'. Under pathological conditions, iron metabolism and superoxide metabolism are clearly interactive. Each can exacerbate the toxicity of the other. Iron overload may amplify the damaging effects of superoxide overproduction in a very broad spectrum of inflammatory, both acute and chronic, conditions. Furthermore, chronic oxidative stress may modulate iron uptake and storage, leading to a self-sustained and ever-increasing spiral of cytotoxic and mutagenic events. The iron chelator deferroxamine is able to chelate 'free iron' even inside the cell. Its regular clinical use is to promote the excretion of an iron overload, when phlebotomy is harmful, and the dosage varies between 2-10 g/d. In conditions where deferroxamine is used to prevent the iron-driven oxygen toxicity, i.e., acute or chronic inflammatory diseases with oxidative stress, the dosage can be extremely reduced and the addition of antioxidants could be useful.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources