Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Aug 3;909(1-2):145-58.
doi: 10.1016/s0006-8993(01)02671-3.

Calretinin and calbindin D-28k delay the onset of cell death after excitotoxic stimulation in transfected P19 cells

Affiliations

Calretinin and calbindin D-28k delay the onset of cell death after excitotoxic stimulation in transfected P19 cells

C D'Orlando et al. Brain Res. .

Abstract

In some neurological diseases, injury to neurones reflects an over-stimulation of their receptors for excitatory amino acids. This response may disturb the Ca(2+)-homeostasis and lead to a pronounced and sustained increase in the intracellular concentration of this ion. On the basis of data derived from correlative studies, calcium-binding proteins have been postulated to play a protective role in these pathologies. We tested, directly, the capacity of the three calcium-binding proteins calretinin (CR), calbindin D-28k (CB) and parvalbumin (PV) to buffer [Ca(2+)], and to protect cells against excitotoxic death. We used P19 murine embryonic carcinoma cells, which can be specifically induced (by retinoic acid) to transform into nerve-like ones. The differentiated cells express functional glutamate-receptors and are susceptible to excitotoxic shock. Undifferentiated P19-cells were stably transfected with the cDNA for CR, CB or PV, induced to differentiate, and then exposed to NMDA, a glutamate-receptor agonist. The survival rates of clones expressing CR, CB or PV were compared with those of untransfected P19-cells using the lactate-dehydrogenase assay. CR- and CB-expressing cells were protected from death during the first 2 h of exposure to NMDA. This protection was, however, transient, and did not suffice to rescue P19-cells after prolonged stimulation. Two of the three PV-transfected clones raised were vulnerable to NMDA-induced excitotoxicity; the third, which expressed the lowest level of PV, was protected to a similar degree as that found for the CR- and CB-transfected clones. Our results indicate that in the P19-cell model, CR and CB can help to delay the onset of cell death after excitotoxic stimulation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources