Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Aug 8;123(31):7691-6.
doi: 10.1021/ja010926m.

Ion conductors derived from cholic acid and spermine: importance of facial hydrophilicity on NA(+) transport and membrane selectivity

Affiliations
Comparative Study

Ion conductors derived from cholic acid and spermine: importance of facial hydrophilicity on NA(+) transport and membrane selectivity

P Bandyopadhyay et al. J Am Chem Soc. .

Abstract

A series of ion conductors have been synthesized in which the degree of facial hydrophilicity has been systematically varied. Specifically, conjugates have been prepared from cholic acid and spermine in which the hydrophilic face of each sterol bears methoxy (1), hydroxy (2), carbamate (3), or sulfate groups (4). The ability of these conjugates to promote the transport of Na(+) across phosphatidylcholine membranes of varying thickness has been investigated by (23)Na NMR spectroscopy. Examination of observed activities in three different phosphatidylcholine membranes has provided evidence for membrane-spanning dimers as the transport-active species. In the thinnest membranes investigated, made from 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine (C14), Na(+)-transport activity was found to increase, substantially, with increasing facial hydrophilicity. In thicker membranes, made from 1,2-dioleoyl-sn-glycero-3-phosphocholine (C18), observed activities were found to decrease with increasing facial hydrophilicity; with a membrane of intermediate thickness, prepared from 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine (C16), ion-conducting activity increased and then decreased, with continuous increases in facial hydrophilicity. The possible origins for these variations in activity are briefly discussed.

PubMed Disclaimer

Publication types

LinkOut - more resources