Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun;442(3):396-403.
doi: 10.1007/s004240100556.

Sexual dimorphism in the adrenergic control of rat brown adipose tissue response to overfeeding

Affiliations

Sexual dimorphism in the adrenergic control of rat brown adipose tissue response to overfeeding

E Rodríguez et al. Pflugers Arch. 2001 Jun.

Abstract

Gender-related differences in the brown adipose tissue (BAT) response to overfeeding rats on a cafeteria diet were studied by assessing the balance between the expression of beta-adrenoceptors (beta1-, beta2-, beta3-AR) and alpha2A-AR and their relation to the expression of uncoupling proteins (UCP1, UCP2, UCP3). Cafeteria diet feeding for 15 days, which involved a similar degree of hyperphagia in both sexes, led to a greater body weight excess in females than in males and a lower activation of thermogenesis. Gender-related differences were found for different adrenoceptor expression and protein levels, which might explain, in part, sex differences in the thermogenic parameters. The lower expression of alpha2A-AR in females than in males could be responsible for the higher expression of UCP1 and thermogenic capacity under non-hyperphagic conditions. However, in a situation of high adrenergic stimulation--as occurs with overfeeding--as there is a preferential recruitment of the beta3-AR by noradrenaline compared with other adrenergic receptors, the higher levels of beta3-AR in males rats than in females could be responsible for the greater thermogenic capacity and the lesser weight gain in males. Thus, the alpha2/beta3 balance in BAT could be a key in the thermogenic control.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources