Amphetamine distorts stimulation-dependent dopamine overflow: effects on D2 autoreceptors, transporters, and synaptic vesicle stores
- PMID: 11487614
- PMCID: PMC6763160
- DOI: 10.1523/JNEUROSCI.21-16-05916.2001
Amphetamine distorts stimulation-dependent dopamine overflow: effects on D2 autoreceptors, transporters, and synaptic vesicle stores
Abstract
Amphetamine (AMPH) is known to raise extracellular dopamine (DA) levels by inducing stimulation-independent DA efflux via reverse transport through the DA transporter and by inhibiting DA re-uptake. In contrast, recent studies indicate that AMPH decreases stimulation-dependent vesicular DA release. One candidate mechanism for this effect is the AMPH-mediated redistribution of DA from vesicles to the cytosol. In addition, the inhibition of stimulation-dependent release may occur because of D2 autoreceptor activation by DA that is released via reverse transport. We used the D2 receptor antagonist sulpiride and mice lacking the D2 receptor to address this issue. To evaluate carefully AMPH effects on release and uptake, we recorded stimulated DA overflow in striatal slices by using continuous amperometry and cyclic voltammetry. Recordings were fit by a random walk simulation of DA diffusion, including uptake with Michaelis-Menten kinetics, that provided estimates of DA concentration and uptake parameters. AMPH (10 microm) promoted the overflow of synaptically released DA by decreasing the apparent affinity for DA uptake (K(m) increase from 0.8 to 32 microm). The amount of DA released per pulse, however, was decreased by 82%. This release inhibition was prevented partly by superfusion with sulpiride (47% inhibition) and was reduced in D2 mutant mice (23% inhibition). When D2 autoreceptor activation was minimal, the combined effects of AMPH on DA release and uptake resulted in an enhanced overflow of exocytically released DA. Such enhancement of stimulation-dependent DA overflow may occur under conditions of low D2 receptor activity or expression, for example as a result of AMPH sensitization.
Figures






Similar articles
-
Presynaptic control of striatal dopamine neurotransmission in adult vesicular monoamine transporter 2 (VMAT2) mutant mice.J Neurochem. 2003 May;85(4):898-910. doi: 10.1046/j.1471-4159.2003.01732.x. J Neurochem. 2003. PMID: 12716422
-
Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter.J Neurosci. 1998 Mar 15;18(6):1979-86. doi: 10.1523/JNEUROSCI.18-06-01979.1998. J Neurosci. 1998. PMID: 9482784 Free PMC article. Review.
-
Effects of d-amphetamine and dopamine synthesis inhibitors on dopamine and acetylcholine neurotransmission in the striatum. II. Release in the presence of vesicular transmitter stores.J Pharmacol Exp Ther. 1986 Apr;237(1):193-203. J Pharmacol Exp Ther. 1986. PMID: 3007738
-
Effects of d-amphetamine and dopamine synthesis inhibitors on dopamine and acetylcholine neurotransmission in the striatum. I. Release in the absence of vesicular transmitter stores.J Pharmacol Exp Ther. 1986 Apr;237(1):179-92. J Pharmacol Exp Ther. 1986. PMID: 3007736
-
Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis.Brain Res. 1986 Jun;396(2):157-98. doi: 10.1016/s0006-8993(86)80193-7. Brain Res. 1986. PMID: 3527341 Review.
Cited by
-
Regulation of presynaptic neurotransmission by macroautophagy.Neuron. 2012 Apr 26;74(2):277-84. doi: 10.1016/j.neuron.2012.02.020. Neuron. 2012. PMID: 22542182 Free PMC article.
-
Dopamine increases NMDA-stimulated calcium flux in striatopallidal neurons through a matrix metalloproteinase-dependent mechanism.Eur J Neurosci. 2016 Jan;43(2):194-203. doi: 10.1111/ejn.13146. Eur J Neurosci. 2016. PMID: 26660285 Free PMC article.
-
Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.Eur J Neurosci. 2016 Jun;43(12):1661-73. doi: 10.1111/ejn.13248. Epub 2016 May 11. Eur J Neurosci. 2016. PMID: 27038339 Free PMC article.
-
Presynaptic dopamine modulation by stimulant self-administration.Front Biosci (Schol Ed). 2013 Jan 1;5(1):261-76. doi: 10.2741/s371. Front Biosci (Schol Ed). 2013. PMID: 23277050 Free PMC article. Review.
-
Site-specific role of catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum.J Neurosci. 2007 Sep 19;27(38):10196-209. doi: 10.1523/JNEUROSCI.0665-07.2007. J Neurosci. 2007. PMID: 17881525 Free PMC article.
References
-
- Anderson BB, Chen G, Gutman DA, Ewing AG. Dopamine levels of two classes of vesicles are differentially depleted by amphetamine. Brain Res. 1998;788:294–301. - PubMed
-
- Bath BD, Michael DJ, Trafton BJ, Joseph JD, Runnels PL, Wightman RM. Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes. Anal Chem. 2000;72:5994–6002. - PubMed
-
- Benoit-Marand M, Jaber M, Gonon F. Release and elimination of dopamine in vivo in mice lacking the dopamine transporter: functional consequences. Eur J Neurosci. 2000;12:2985–2992. - PubMed
-
- Berg HC. Random walks in biology. Princeton UP; Princeton, NJ: 1983.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources