Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Aug 10;75(3):401-8.
doi: 10.1016/s0168-3659(01)00392-3.

DQAsome/DNA complexes release DNA upon contact with isolated mouse liver mitochondria

Affiliations

DQAsome/DNA complexes release DNA upon contact with isolated mouse liver mitochondria

V Weissig et al. J Control Release. .

Abstract

DQAsomes are mitochondriotropic cationic vesicles, which have been developed by us for the supposed transport of DNA to mitochondria in living cells [Pharm. Res. 15 (1998) 334]. Our strategy for the delivery of DNA into the matrix of mitochondria is based upon the putative transport of a DNA-signal peptide conjugate to mitochondria, the liberation of this conjugate from DQAsomes at the mitochondrial membrane followed by DNA uptake via the mitochondrial protein import machinery. As a first and important step towards delivery of DNA into mitochondria of living cells, we studied the DNA release from DQAsomes upon contact with non-energized mitochondria in vitro. Mitochondria were isolated from mouse liver and characterized by electron microscopy and the determination of mitochondrial marker enzyme activity. DQAsomes were added to DNA in the presence of SYBR Green I resulting in the formation of DQAsome/DNA complex and the complete loss of fluorescence. Following the addition of isolated mitochondria to DQAsome/DNA complex, the fluorescence signal was recovered due to the dissociation of DNA from its cationic carrier. Thus, DQAsome/DNA complexes were shown to release DNA upon contact with the surface of mitochondria thereby meeting a key requirement for our strategy towards mitochondrial DNA delivery.

PubMed Disclaimer

Publication types

LinkOut - more resources