Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Aug;7(8):2168-81.

Cell cycle-mediated drug resistance: an emerging concept in cancer therapy

Affiliations
  • PMID: 11489790
Review

Cell cycle-mediated drug resistance: an emerging concept in cancer therapy

M A Shah et al. Clin Cancer Res. 2001 Aug.

Abstract

The concept of combining chemotherapeutic agents to increase cytotoxic efficacy has evolved greatly over the past several years. The rationale for combination chemotherapy has centered, in the past, on attacking different biochemical targets, overcoming drug resistance in heterogeneous tumors, and by taking advantage of tumor growth kinetics with increasing the dose-density of combination chemotherapy. The overall goal was to improve clinical efficacy with acceptable clinical toxicity. With our increased understanding of the cell cycle and the impact chemotherapeutic agents have on the cell cycle, it is increasingly apparent that this physiology can create drug resistance, thereby reducing combination chemotherapeutic efficacy. This is particularly relevant with the advent of cell cycle-specific inhibitors but also has relevance for the action of standard chemotherapeutic agents currently in clinical practice. This cell cycle-mediated resistance may be overcome by a greater understanding of chemotherapeutic cell cycle effects and by appropriate sequencing and scheduling of agents in combination chemotherapy. In this review, we have elected to illustrate the evolving concept of cell cycle-mediated drug resistance with novel drug combinations that include the taxanes, camptothecins, and fluorouracil. This review indicates that as our understanding of the cell cycle grows, our ability to appropriately sequence chemotherapy to overcome cell cycle-mediated drug resistance can have a great impact on our therapeutic approach in the treatment of human cancers.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources