Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep;281(3):E466-71.
doi: 10.1152/ajpendo.2001.281.3.E466.

Leucine and insulin activate p70 S6 kinase through different pathways in human skeletal muscle

Affiliations
Free article

Leucine and insulin activate p70 S6 kinase through different pathways in human skeletal muscle

J S Greiwe et al. Am J Physiol Endocrinol Metab. 2001 Sep.
Free article

Abstract

Amino acids and insulin have anabolic effects in skeletal muscle, but the mechanisms are poorly understood. To test the hypothesis that leucine and insulin stimulate translation initiation in human skeletal muscle by phosphorylating 70-kDa ribosomal protein S6 kinase (p70(S6k)), we infused healthy adults with leucine alone (n = 6), insulin alone (n = 6), or both leucine and insulin (n = 6) for 2 h. p70(S6k) and protein kinase B (PKB) serine(473) phosphorylation were measured in vastus lateralis muscles. Plasma leucine increased from approximately 116 to 343 micromol/l during the leucine-alone and leucine + insulin infusions. Plasma insulin increased to approximately 400 pmol/l during the insulin-alone and leucine + insulin infusions and was unchanged during the leucine-alone infusion. Phosphorylation of p70(S6k) increased 4-fold in response to leucine alone, 8-fold in response to insulin alone, and 18-fold after the leucine + insulin infusion. Insulin-alone and leucine + insulin infusions increased PKB phosphorylation, but leucine alone had no effect. These results show that physiological concentrations of leucine and insulin activate a key mediator of protein synthesis in human skeletal muscle. They suggest that leucine stimulates protein synthesis through a nutrient signaling mechanism independent of insulin, raising the possibility that administration of branched-chain amino acids may improve protein synthesis in insulin-resistant states.

PubMed Disclaimer

Publication types

LinkOut - more resources