Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Jul 27;69(10):1133-42.
doi: 10.1016/s0024-3205(01)01204-8.

Effect of ovarian steroids on nitric oxide synthase in the rat uterus, cervix and vagina

Affiliations
Comparative Study

Effect of ovarian steroids on nitric oxide synthase in the rat uterus, cervix and vagina

J Al-Hijji et al. Life Sci. .

Abstract

The effects of estrogen (E2), progesterone (P) and E2 and P (E2 + P) were examined on nitric oxide synthase (NOS) activity in both cytosolic and particulate fractions isolated from the rat uterus, vagina, cervix and cerebral cortex. Additionally plasma nitrate + nitrite (NO3 + NO2) levels were measured in control and hormone treated rats. Cytosolic NOS was the predominant form being approximately 80% of the total in all four tissues. NOS activity in both fractions from all tissues was highly Ca-dependent (> 90%). Among the reproductive tract tissues, the highest activity was found in the cervix, which was nearly 5- and 2-fold higher than the uterus and vagina, respectively. NOS activity in the cerebral cortex was by far the highest being 5-fold higher than in the cervix. In contrast to the cortex, E2 treatment downregulated cytosolic NOS in all reproductive tract tissue, but this was statistically significant in only uterus. When compared with E2 treated rats, P increased cytosolic NOS in uterus, vagina, and particulate NOS in the cervix. The data do not give any indication whatsoever of differential effects of P in the uterus and cervix.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources