Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jul;442(4):498-504.
doi: 10.1007/s004240100544.

Differential gene regulation of renal salt entry pathways by salt load in the distal nephron of the rat

Affiliations

Differential gene regulation of renal salt entry pathways by salt load in the distal nephron of the rat

K Wolf et al. Pflugers Arch. 2001 Jul.

Abstract

The aim of the present study was to determine the molecular responses of the main salt-reabsorbing systems in the distal nephron to changes of salt load of the organism. For this purpose we analysed messenger ribonucleic acid (mRNA) levels for the bumetanide-sensitive Na+K+2Cl- cotransporter (BSC1), the thiazide-sensitive Na+Cl- cotransporter (TSC), the kidney-specific inwards rectifier K+ channel (ROMK), the amiloride-sensitive epithelial Na+ channel (ENaC) and the kidney-specific Cl- channel ClC-K2, in the cortex and inner and outer medulla of kidneys from male Sprague-Dawley rats fed a high- (8% w/w), normal- (0.6%) or low-(0.02%) salt diet or treated chronically with subcutaneous infusions of furosemide (12 mg/kg per day). BSC1 and ROMK mRNA levels did not differ between the four treatment groups. TSC mRNA increased during furosemide treatment 1.75-fold versus control but was not affected by a high- or a low-salt diet. The mRNA for the alpha-subunit of ENaC increased with the low-salt diet (about 1.5-fold) and with furosemide (about 2.1-fold) in all kidney zones, but did not change with the high-salt diet. Dietary salt loading down-regulated CIC-K2 mRNA in the outer medulla 0.6-fold versus control whilst furosemide treatment, but not the low-salt diet, increased ClC-K2 mRNA in the outer (1.6-fold) and inner medulla (2.0-fold). These findings suggest that gene expression of Na+ and Cl- entry pathways in the distal nephron are at least partly regulated by the salt load of the organism, such that salt-reabsorbing systems are stimulated by salt deficiency and suppressed by salt overload.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources