Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Aug 10;503(1):46-50.
doi: 10.1016/s0014-5793(01)02694-1.

Coenzyme Q blocks biochemical but not receptor-mediated apoptosis by increasing mitochondrial antioxidant protection

Affiliations
Free article

Coenzyme Q blocks biochemical but not receptor-mediated apoptosis by increasing mitochondrial antioxidant protection

R Alleva et al. FEBS Lett. .
Free article

Abstract

Generation of free radicals is often associated with the induction and progression of apoptosis. Therefore, antioxidants can prove anti-apoptotic, and can help to elucidate specific apoptotic pathways. Here we studied whether coenzyme Q, present in membranes in reduced (ubiquinol) or oxidised (ubiquinone) forms, can affect apoptosis induced by various stimuli. Exposure of Jurkat cells to alpha-tocopheryl succinate (alpha-TOS), hydrogen peroxide, anti-Fas IgM or TRAIL led to induction of apoptosis. Cell death due to the chemical agents was suppressed in cells enriched with the reduced form of coenzyme Q. However, coenzyme Q did not block cell death induced by the immunological agents. Ubiquinol-10 inhibited reactive oxygen species (ROS) generation in cells exposed to alpha-TOS, and a mitochondrially targeted coenzyme Q analogue also blocked apoptosis triggered by alpha-TOS or hydrogen peroxide. Therefore, it is plausible that ubiquinol-10 protects cells from chemically-induced apoptosis by acting as an antioxidant in mitochondria. Our results also indicate that generation of free radicals may not be a critical step in induction of apoptosis by immunological agents.

PubMed Disclaimer

Publication types