Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Aug;8(8):759-66.
doi: 10.1016/s1074-5521(01)00049-7.

The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase

Affiliations

The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase

B H Kwok et al. Chem Biol. 2001 Aug.

Abstract

Background: Biologically active natural products continue to be useful in the exploration and control of intracellular signaling processes. For example, the sesquiterpene lactone parthenolide from the anti-inflammatory medicinal herb Feverfew (Tanacetum parthenium) appears to inhibit the pro-inflammatory signaling pathway. Parthenolide's direct molecular target, however, remains unknown. We set out to identify the molecular mechanisms of parthenolide's anti-inflammatory activity.

Results: A parthenolide affinity reagent was synthesized and shown to bind directly to and inhibit IkappaB kinase beta (IKKbeta), the kinase subunit known to play a critical role in cytokine-mediated signaling. Mutation of cysteine 179 in the activation loop of IKKbeta abolished sensitivity towards parthenolide. Moreover, we showed that parthenolide's in vitro and in vivo anti-inflammatory activity is mediated through the alpha-methylene gamma-lactone moiety shared by other sesquiterpene lactones.

Conclusions: In recent years, the multi-subunit IKK complex has been shown to be responsible for cytokine-mediated stimulation of genes involved in inflammation and as such represents an attractive target for pharmaceutical intervention. Our finding that parthenolide targets this kinase complex provides a possible molecular basis for the anti-inflammatory properties of parthenolide. In addition, these results may be useful in the development of additional anti-inflammatory agents.

PubMed Disclaimer

Publication types

MeSH terms