Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep;142(9):3880-9.
doi: 10.1210/endo.142.9.8366.

Peripheral administration of an angiotensin II AT(1) receptor antagonist decreases the hypothalamic-pituitary-adrenal response to isolation Stress

Affiliations

Peripheral administration of an angiotensin II AT(1) receptor antagonist decreases the hypothalamic-pituitary-adrenal response to isolation Stress

I Armando et al. Endocrinology. 2001 Sep.

Abstract

Angiotensin II, which stimulates AT(1) receptors, is a brain and peripheral stress hormone. We pretreated rats with the AT(1) receptor antagonist candesartan for 13 d via sc-implanted osmotic minipumps, followed by 24-h isolation in individual metabolic cages. We measured angiotensin II receptor-type binding and mRNAs and tyrosine hydroxylase mRNA by quantitative autoradiography and in situ hybridization, catecholamines by HPLC, and hormones by RIA. Isolation increased AT(1) receptor binding in hypothalamic paraventricular nucleus as well as anterior pituitary ACTH, and decreased posterior pituitary AVP. Isolation stress also increased AT(1) receptor binding and AT(1B) mRNA in zona glomerulosa and AT(2) binding in adrenal medulla, adrenal catecholamines, tyrosine hydroxylase mRNA, aldosterone, and corticosterone. Candesartan blocked AT(1) binding in paraventricular nucleus and adrenal gland; prevented the isolation-induced alterations in pituitary ACTH and AVP and in adrenal corticosterone, aldosterone, and catecholamines; abolished the increase in AT(2) binding in adrenal medulla; and substantially decreased urinary AVP, corticosterone, aldosterone, and catecholamines during isolation. Peripheral pretreatment with an AT(1) receptor antagonist blocks brain and peripheral AT(1) receptors and inhibits the hypothalamic-pituitary-adrenal response to stress, suggesting a physiological role for peripheral and brain AT(1) receptors during stress and a possible beneficial effect of AT(1) antagonism in stress-related disorders.

PubMed Disclaimer

Publication types

MeSH terms