Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 May;382(5):839-45.
doi: 10.1515/BC.2001.102.

Cathepsins X and B display distinct activity profiles that can be exploited for inhibitor design

Affiliations
Comparative Study

Cathepsins X and B display distinct activity profiles that can be exploited for inhibitor design

R Ménard et al. Biol Chem. 2001 May.

Abstract

The carboxypeptidase and endopeptidase activities of cathepsins X and B, as well as their inhibition by E-64 derivatives, have been investigated in detail and compared. The results clearly demonstrate that cathepsins X and B do not share similar activity profiles against substrates and inhibitors. Using quenched fluorogenic substrates, we show that cathepsin X preferentially cleaves substrates through a monopeptidyl carboxypeptidase pathway, while cathepsin B displays a preference for the dipeptidyl pathway. The preference for one or the other pathway is about the same for both enzymes, i. e. approximately 2 orders of magnitude. Cleavage of a C-terminal dipeptide of a substrate by cathepsin X can be observed under conditions that preclude efficient monopeptidyl carboxypeptidase activity. In addition, an inhibitor designed to exploit the unique structural features responsible for the carboxypeptidase activity of cathepsin X has been synthesized and tested against cathepsins X, B and L. Although of moderate potency, this E-64 derivative is the first reported example of a cathepsin X-specific inhibitor. By comparison, CA074 was found to inactivate cathepsin B at least 34000-fold more efficiently than cathepsin X.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources