Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jul;19(4):688-95.
doi: 10.1016/S0736-0266(00)00060-7.

Corticosteroids alter the differentiated phenotype of articular chondrocytes

Affiliations

Corticosteroids alter the differentiated phenotype of articular chondrocytes

S L Fubini et al. J Orthop Res. 2001 Jul.

Abstract

Experimental evidence suggests that recommended dosages of some corticosteroids used clinically as antiinflammatory agents for treating arthropathies damage articular cartilage, but low dosages may be chondroprotective. The purpose of this study was to evaluate how different concentrations of methylprednisolone affect chondrocyte function and viability. Articular cartilage and chondrocytes were obtained from young adult horses, 1.5-3.5 years of age. Corticosteroid-induced changes in collagen expression were studied at the transcriptional level by Northern blot analyses and at the translational level by measuring [3H]-proline incorporation into [3H]-hydroxyproline. Fibronectin mRNA splicing patterns were evaluated with ribonuclease protection assays. Cytotoxicity was studied using erythrosin B dye exclusion. Steady-state levels of type II procollagen mRNA decreased without concurrent changes in type I procollagen expression as the medium methylprednisolone concentrations were increased from 1 x 10(1) to 1 x 10(8) pg/ml, dropping below 10% of control values by 1 x 10(5) pg/ml. Cytotoxicity occurred as methylprednisolone levels were increased further from 1 x 10(8) to 1 x 10(9) pg/ml. Changes in total collagen (protein) synthesis were less pronounced, but also demonstrated significant suppression between 1 x 10(4) and 1 x 10(8) pg/ml. Corticosteroid-induced changes in fibronectin isoform levels were evaluated in articular cartilage samples without in vitro culture. The cartilage-specific (V + C)(-) isoform was suppressed in both normal and inflamed joints by a single intraarticular injection (0.1 mg/kg) of methylprednisolone. Combined, these data indicate that methylprednisolone suppresses matrix protein markers of chondrocytic differentiation. Decreased and altered chondrocyte expression of matrix proteins likely contributes to the pathogenesis of corticosteroid-induced cartilage degeneration.

PubMed Disclaimer

Publication types