Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Sep;42(9):1346-67.

Structure of apolipoprotein B-100 in low density lipoproteins

Affiliations
  • PMID: 11518754
Free article
Review

Structure of apolipoprotein B-100 in low density lipoproteins

J P Segrest et al. J Lipid Res. 2001 Sep.
Free article

Abstract

There is general consensus that amphipathic alpha-helices and beta sheets represent the major lipid-associating motifs of apolipoprotein (apo)B-100. In this review, we examine the existing experimental and computational evidence for the pentapartite domain structure of apoB. In the pentapartite nomenclature presented in this review (NH(2)-betaalpha(1)-beta(1)-alpha(2)-beta(2)-alpha(3)-COOH), the original alpha(1) globular domain (Segrest, J. P. et al. 1994. Arterioscler. Thromb. 14: 1674;-1685) is expanded to include residues 1;-1,000 and renamed the betaalpha(1) domain. This change reflects the likelihood that the betaalpha(1) domain, like lamprey lipovitellin, is a globular composite of alpha-helical and beta-sheet secondary structures that participates in lipid accumulation in the co-translationally assembled prenascent triglyceride-rich lipoprotein particles. Evidence is presented that the hydrophobic faces of the amphipathic beta sheets of the beta(1) and beta(2) domains of apoB-100 are in direct contact with the neutral lipid core of apoB-containing lipoproteins and play a role in core lipid organization. Evidence is also presented that these beta sheets largely determine LDL particle diameter. Analysis of published data shows that with a reduction in particle size, there is an increase in the number of amphipathic helices of the alpha(2) and alpha(3) domains associated with the surface lipids of the LDL particle; these increases modulate the surface pressure decreases caused by a reduction in radius of curvature. The properties of the LDL receptor-binding region within the overall domain structure of apoB-100 are also discussed. Finally, recent three-dimensional models of LDL obtained by cryoelectron microscopy and X-ray crystallography are discussed. These models show three common features: a semidiscoidal shape, a surface knob with the dimensions of the betaC globular domain of lipovitellin, and planar multilayers in the lipid core that are approximately 35 A apart; the multilayers are thought to represent cholesteryl ester in the smectic phase. These models present a conundrum: are LDL particles circulating at 37 degrees C spheroidal in shape, as generally assumed, or are they semidiscoidal in shape, as suggested by the models? The limited evidence available supports a spheroidal shape.

PubMed Disclaimer

Publication types

LinkOut - more resources