Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep;171(1):176-84.
doi: 10.1006/exnr.2001.7740.

Activation of a latent respiratory motor pathway by stimulation of neurons in the medullary chemoreceptor area of the rat

Affiliations

Activation of a latent respiratory motor pathway by stimulation of neurons in the medullary chemoreceptor area of the rat

S Y Zhou et al. Exp Neurol. 2001 Sep.

Abstract

Previous studies have demonstrated that during respiratory stress (hypercapnia and hypoxia), a latent crossed respiratory pathway can be activated to produce hemidiaphragm recovery following an ipsilateral C2 spinal cord hemisection. The present study investigates the effects of ventral medullary chemoreceptor area stimulation by microinjection of (1S,3R)-aminocyclopentanedicarboxylic acid (ACPD), a glutamate metabotropic receptor agonist, on activating the latent pathway following left C2 spinal cord hemisection in rats in which end-tidal CO2 was maintained at a constant level. Experiments were conducted on anesthetized, vagotomized, paralyzed, and artificially ventilated rats in which phrenic nerve activity was recorded bilaterally. Before drug injection, the phrenic nerve contralateral to hemisection showed vigorous respiratory-related activity, but the phrenic nerve ipsilateral to hemisection showed no discernible respiratory-related activity. ACPD (1-100 nl, 1 mM) was injected directly into the region of the retrotrapezoid nucleus (RTN), a known medullary chemoreceptor area. Microinjection of ACPD into the right RTN increased respiratory-related activity in the right phrenic nerve (contralateral to hemisection). ACPD (>5 nl, 1 mM) microinjection also significantly induced respiratory recovery in the phrenic nerve ipsilateral to hemisection in a dose-dependent manner. The present study indicates that respiratory recovery can be achieved by stimulation of respiratory circuitry without increasing CO2 levels.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources