Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Oct 30;78(1-2):57-66.
doi: 10.1016/s0168-1702(01)00284-2.

Functional changes in astrocytes by human T-lymphotropic virus type-1 T-lymphocytes

Affiliations

Functional changes in astrocytes by human T-lymphotropic virus type-1 T-lymphocytes

H Akaoka et al. Virus Res. .

Abstract

The human T-lymphotropic virus type-1 (HTLV-1) is the causative agent of a chronic progressive myelopathy (TSP/HAM) in which lesions of the central nervous system (CNS) are associated with infiltration of HTLV-1-infected T-cells. In a model that mimics the interaction between glial and T-cells, we show that transient contact with T-lymphocytes chronically infected with HTLV-1 induce profound metabolic alterations in astrocytes. Within the first week post-contact, an overall activation of astrocyte metabolism was observed as assessed by enhanced uptake of glutamate and glucose, and lactate release. In contrast, longer examination showed a reduced astrocytic accumulation of glutamate. The time course of the change in glutamate uptake was in fact biphasic. Previous observations indicated that HTLV-1 protein Tax-1 was involved in this delayed decrease, via the induction of TNF-alpha. The expression of the glial glutamate transporters, GLAST and GLT-1 decreased in parallel. These decreases in glutamate uptake and transporters' expression were associated with an imbalance in the expression of the catabolic enzymes of glutamate, GS and GDH, presumably due to Tax-1. Given the fact that impairment of glutamate management in astrocytes is able to compromise the functional integrity of neurons and oligodendrocytes, our results altogether give new insights into the physiopathology of TSP/HAM.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources