Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep;124(Pt 9):1743-53.
doi: 10.1093/brain/124.9.1743.

The expression profile of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in lesions and normal appearing white matter of multiple sclerosis

Affiliations

The expression profile of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in lesions and normal appearing white matter of multiple sclerosis

R L Lindberg et al. Brain. 2001 Sep.

Abstract

In multiple sclerosis, matrix metalloproteinases (MMPs) are effectors of crucial pathogenetic steps, such as blood-brain barrier breakdown, invasion of brain parenchyma by immune cells and demyelination. However, only limited data are available on the types of MMPs induced in the course of multiple sclerosis, and on the role of their endogenous antagonists, the tissue inhibitors of metalloproteinases (TIMPs). We quantified the transcriptional expression of six MMPs and the four TIMPs in lesions and in normal appearing white matter (NAWM) from post-mortem multiple sclerosis brain tissue by real-time polymerase chain reaction, and compared levels with those in brain tissue from six control patients without neurological disease. The mRNA expression of MMP-7 and -9, but not of other metalloproteinases [MMP-2 and -3, and tumour necrosis factor (TNF)-alpha-converting-enzyme] was equally upregulated throughout all stages of lesion formation with active inflammation, and in most of matched NAWM tissue. The transcription of cytokines TNF-alpha/beta and IL (interleukin)-2, known modulators of MMPs, was upregulated only in distinct stages of lesion formation, while their receptors were not induced at all, which suggests that additional signalling molecules participate in the sustained upregulation of MMP-7 and -9 in multiple sclerosis. None of the TIMPs showed a significant induction over baseline expression of controls. We hypothesize that an imbalance between MMP and TIMP expression may cause a persistent proteolytic overactivity in multiple sclerosis, that may be a factor for continuous tissue destruction, and hence for secondary disease progression.

PubMed Disclaimer

Publication types

MeSH terms