Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep 10;269(1):154-61.
doi: 10.1006/excr.2001.5301.

Protein kinase C-dependent upregulation of N-cadherin expression by phorbol ester in human calvaria osteoblasts

Affiliations

Protein kinase C-dependent upregulation of N-cadherin expression by phorbol ester in human calvaria osteoblasts

P Delannoy et al. Exp Cell Res. .

Abstract

Cell-cell adhesion mediated by cadherins is believed to play an essential role in the control of cell differentiation and tissue formation. Our recent studies indicate that N-cadherin is involved in human osteoblast differentiation. However, the signalling molecules that regulate cadherins in osteoblasts are not known. We tested the possibility that N-cadherin expression and function may be regulated by direct activation of protein kinase C (PKC) in human osteoblasts. Treatment of immortalized human neonatal calvaria (IHNC) cells with phorbol 12,13-dibutyrate (100 nM) transiently increased PKC activity. RT-PCR analysis showed that transient treatment with phorbol ester transiently increased N-cadherin mRNA levels at 4-12 h. Western blot analysis showed that N-cadherin protein levels were increased by phorbol ester at 24-48 h, and this was confirmed by immunocytochemical analysis. In contrast, E-cadherin expression was not affected. Transient treatment of IHNC cells with phorbol ester increased cell-cell aggregation, which was suppressed by neutralizing N-cadherin antibody, showing that the increased N-cadherin induced by phorbol ester was functional. Finally, phorbol ester dose-dependently increased alkaline phosphatase activity, an early marker of osteoblast differentiation. This effect was comparable to the promoting effect of BMP-2, a potent activator of osteoblast differentiation. These data show that direct activation of PKC by phorbol ester increases N-cadherin expression and function, and promotes ALP activity in human calvaria osteoblasts, which provides a signaling mechanism by which N-cadherin is regulated and suggests a role for PKC in N-cadherin-mediated control of human osteoblast differentiation.

PubMed Disclaimer

MeSH terms

LinkOut - more resources