Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep;39(9):3247-53.
doi: 10.1128/JCM.39.9.3247-3253.2001.

Evaluation of the VITEK 2 system for the identification and susceptibility testing of three species of nonfermenting gram-negative rods frequently isolated from clinical samples

Affiliations

Evaluation of the VITEK 2 system for the identification and susceptibility testing of three species of nonfermenting gram-negative rods frequently isolated from clinical samples

P Joyanes et al. J Clin Microbiol. 2001 Sep.

Abstract

VITEK 2 is a new automatic system for the identification and susceptibility testing of the most clinically important bacteria. In the present study 198 clinical isolates, including Pseudomonas aeruginosa (n = 146), Acinetobacter baumannii (n = 25), and Stenotrophomonas maltophilia (n = 27) were evaluated. Reference susceptibility testing of cefepime, cefotaxime, ceftazidime, ciprofloxacin, gentamicin, imipenem, meropenem, piperacillin, tobramycin, levofloxacin (only for P. aeruginosa), co-trimoxazole (only for S. maltophilia), and ampicillin-sulbactam and tetracycline (only for A. baumannii) was performed by microdilution (NCCLS guidelines). The VITEK 2 system correctly identified 91.6, 100, and 76% of P. aeruginosa, S. maltophilia, and A. baumannii isolates, respectively, within 3 h. The respective percentages of essential agreement (to within 1 twofold dilution) for P. aeruginosa and A. baumannii were 89.0 and 88.0% (cefepime), 91.1 and 100% (cefotaxime), 95.2 and 96.0% (ceftazidime), 98.6 and 100% (ciprofloxacin), 88.4 and 100% (gentamicin), 87.0 and 92.0% (imipenem), 85.0 and 88.0% (meropenem), 84.2 and 96.0% (piperacillin), and 97.3 and 80% (tobramycin). The essential agreement for levofloxacin against P. aeruginosa was 86.3%. The percentages of essential agreement for ampicillin-sulbactam and tetracycline against A. baumannii were 88.0 and 100%, respectively. Very major errors for P. aeruginosa (resistant by the reference method, susceptible with the VITEK 2 system [resistant to susceptible]) were noted for cefepime (0.7%), cefotaxime (0.7%), gentamicin (0.7%), imipenem (1.4%), levofloxacin (2.7%), and piperacillin (2.7%) and, for one strain of A. baumannii, for imipenem. Major errors (susceptible to resistant) were noted only for P. aeruginosa and cefepime (2.0%), ceftazidime (0.7%), and piperacillin (3.4%). Minor errors ranged from 0.0% for piperacillin to 22.6% for cefotaxime against P. aeruginosa and from 0.0% for piperacillin and ciprofloxacin to 20.0% for cefepime against A. baumannii. The VITEK 2 system provided co-trimoxazole MICs only for S. maltophilia; no very major or major errors were obtained for co-trimoxazole against this species. It is concluded that the VITEK 2 system allows the rapid identification of S. maltophilia and most P. aeruginosa and A. baumannii isolates. The VITEK 2 system can perform reliable susceptibility testing of many of the antimicrobial agents used against P. aeruginosa and A. baumannii. It would be desirable if new versions of the VITEK 2 software were able to determine MICs and the corresponding clinical categories of agents active against S. maltophilia.

PubMed Disclaimer

References

    1. Barenfanger J, Drake C, Kacich G. Clinical and financial benefits of rapid bacterial identification and antimicrobial susceptibility testing. J Clin Microbiol. 1999;37:1415–1418. - PMC - PubMed
    1. Bouvet P J M, Grimont P A D. Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov., and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int J Syst Bacteriol. 1986;36:228–240.
    1. Bouvet P J M, Jeanjean S. Delineation of new proteolytic genomic species in the genus Acinetobacter. Res Microbiol. 1989;140:291–299. - PubMed
    1. Daly J S, Deluca B A, Hebert S R, Dodge R A, Soja D T. Imipenem stability in a predried susceptibility panel. J Clin Microbiol. 1994;32:2584–2587. - PMC - PubMed
    1. Dib C, Trias J, Jarlier V. Lack of additive effect between mechanisms of resistance to carbapenems and other β-lactams in Pseudomonas aeruginosa. Eur J Clin Microbiol Infect. 1995;14:979–986. - PubMed

Publication types

MeSH terms

Substances